博士論文
国立国会図書館館内限定公開
収録元データベースで確認する
国立国会図書館デジタルコレクション
デジタルデータあり
公開元のウェブサイトで確認する
DOI[10.14943/doctoral.k15192]のデータに遷移します
Development of Carrier-Flotation Technique for Finely Ground Copper Sulfides
- 国立国会図書館永続的識別子
- info:ndljp/pid/13117234
- 資料種別
- 博士論文
- 著者
- BILAL, Muhammad
- 出版者
- Hokkaido University
- 出版年
- 2022-09-26
- 資料形態
- デジタル
- ページ数・大きさ等
- -
- 授与大学名・学位
- 北海道大学,博士(工学)
国立国会図書館での利用に関する注記
本資料は、掲載誌(URI)等のリンク先にある学位授与機関のWebサイトやCiNii Dissertationsから、本文を自由に閲覧できる場合があります。
資料に関する注記
一般注記:
- Copper (Cu) is one of the most important metals required to meet the world’s growing energy production, storage, and transportation needs. Porphyry co...
資料詳細
要約等:
- Copper (Cu) is one of the most important metals required to meet the world’s growing energy production, storage, and transportation needs. Porphyry co...
書店で探す
障害者向け資料で読む
全国の図書館の所蔵
国立国会図書館以外の全国の図書館の所蔵状況を表示します。
所蔵のある図書館から取寄せることが可能かなど、資料の利用方法は、ご自身が利用されるお近くの図書館へご相談ください
書店で探す
障害者向け資料で読む
書誌情報
この資料の詳細や典拠(同じ主題の資料を指すキーワード、著者名)等を確認できます。
デジタル
- 資料種別
- 博士論文
- 著者・編者
- BILAL, Muhammad
- 著者標目
- 出版年月日等
- 2022-09-26
- 出版年(W3CDTF)
- 2022-09-26
- 授与機関名
- 北海道大学
- 授与年月日
- 2022-09-26
- 授与年月日(W3CDTF)
- 2022-09-26
- 報告番号
- 甲第15192号
- 学位
- 博士(工学)
- 本文の言語コード
- eng
- NDC
- 対象利用者
- 一般
- 一般注記
- Copper (Cu) is one of the most important metals required to meet the world’s growing energy production, storage, and transportation needs. Porphyry copper deposits (PCDs) make up a large portion of the world’s economic copper resources. Porphyry copper deposits contain hundreds of millions of tons of ore averaging only a fraction of 0.44% copper. Although PCDs are low-grade, they are important because they can be mined at a low cost on a large scale. Flotation is a common mineral processing method used to produce copper concentrates from copper sulfide ores. In this method, copper sulfide minerals are concentrated in the froth while associated gangue minerals are separated as tailings. However, some amount of copper is lost to tailings during the processing; therefore, tailings can be considered secondary resources or future deposits of copper. The particle sizes of copper sulfide minerals present in tailings are typically very fine because of the adoption of the regrinding process before cleaner flotation for improving the degree of liberation. Ultrafine particles are least likely to collide with air bubbles in the flotation cell, resulting in the lowering of their recovery by conventional flotation techniques. Therefore, the development of flotation methods able to recover fine particles effectively is necessary for processing tailings. In this regard, this study investigated an innovative method called carrier flotation using coarse chalcopyrite and pyrite as carriers for improving the recovery of finely ground chalcopyrite particles.Chapter 1 describes the statement of the problem and the objectives of this study. Chapter 2 reviews the comparison of different techniques to recover copper sulfides from flotation tailings, including column flotation, microbubble flotation, nanobubble flotation, polymer flocculation, shear flocculation, oil agglomeration, and carrier flotation.In Chapter 3, the effects of coarse chalcopyrite particles as a carrier on flotation behavior of fine chalcopyrite were investigated by the flotation experiments using fine chalcopyrite (particle size D50 = 2.3 µm) with a varied amount of carrier particles of different sizes (–75 + 38 µm and –106 + 75 µm) using an agitated flotation cell. The addition of carrier particles improved the recovery of ultrafine particles into the froth from around 25% (without carrier) to around 80% (with 20 g of carrier, –75+38 µm size). Recovery of fine particles was higher with smaller carrier size (–75+38 µm) compared with larger carrier size (–106+75 µm), though the difference was not significant.In Chapter 4, the effects of pyrite as a carrier for recovering finely ground chalcopyrite particles were investigated. Flotation experiments for finely ground chalcopyrite (D50 = 3 µm) were conducted with and without coarse pyrite (–125+106 µm) using potassium amyl xanthate as a collector. The results showed that untreated pyrite did not act as an effective carrier and that the amount of fine chalcopyrite attached to pyrite was not significant; furthermore, Cu recovery into froth was around 65% both with and without pyrite. When pyrite was pre-treated with a CuSO4 solution, its carrier ability improved owing to a significant amount of fine chalcopyrite becoming attached to the Cu2+-activated pyrite particles and being recovered with pyrite into the froth (Cu recovery, >90 %).In Chapter 5, a method to separate finely ground chalcopyrite particles from coarse pyrite particles was investigated. Results showed that at pH ∼2, the collector adsorbed onto chalcopyrite/pyrite surfaces could be dissolved, and thus around 90% of fine chalcopyrite was detached from coarse pyrite particles. In Chapter 6, a summary of this dissertation’s findings and implications were provided.(主査) 教授 伊藤 真由美, 教授 広吉 直樹, 教授 佐藤 努, 准教授 東條 安匡工学院(環境循環システム専攻)
- DOI
- 10.14943/doctoral.k15192
- 国立国会図書館永続的識別子
- info:ndljp/pid/13117234
- コレクション(共通)
- コレクション(障害者向け資料:レベル1)
- コレクション(個別)
- 国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
- 収集根拠
- 博士論文(自動収集)
- 受理日(W3CDTF)
- 2023-12-05T21:40:44+09:00
- 記録形式(IMT)
- application/pdf
- オンライン閲覧公開範囲
- 国立国会図書館内限定公開
- デジタル化資料送信
- 図書館・個人送信対象外
- 遠隔複写可否(NDL)
- 可
- 連携機関・データベース
- 国立国会図書館 : 国立国会図書館デジタルコレクション