タイトル(掲載誌)Reports in Electrochemistry
一般注記Electrolysis of water without salt in a thin layer cell requires a voltage of more than 1.3 V. This voltage is found to be reduced to 0.4 V when hydrogen gas is dissolved in electrolyzed water. The decrease in the overvoltage can be used for the salt-free electrolysis of pure water. Thin layer electrolysis under steady state is often caused by redox cycling. The redox cycling model relevant to the reaction between H2 and H+ is theoretically analyzed here in a two-electrode cell. The validity and limitation are discussed on the basis of the experimental voltammograms of a solution containing H2 and H+. When a solution contains H2 without deliberately adding H+, hydrogen gas would not be expected at the cathode due to the small amount of H+. Consequently redox cycling might be blocked. However, experimental voltammograms, without the addition of H+, exhibited the steady state limiting current by redox cycling. The current was regarded as dissociation kinetics of water. The redox cycling in this case was theoretically analyzed to partially explain the experimental results. The oxidation of hydrogen gas at the anode facilitates the dissociation kinetics to produce redox cycling.
連携機関・データベース国立情報学研究所 : 学術機関リポジトリデータベース(IRDB)(機関リポジトリ)