並列タイトル等浸漬時間によりナノ構造を形成させた純チタン金属が血管内皮細胞に与える影響について
一般注記Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sucient biocompatibility. In the present study, we explored the material surface functionalization and assessed the initial adhesion of rat bone marrow mesenchymal stem cells, their osteogenic dierentiation, and production of hard tissue, on plasma-treated alkali-modified nano-ZR. Superhydrophilicity was observed on the plasma-treated surface of alkali-treated nano-ZR along with hydroxide formation and reduced surface carbon. A decreased contact angle was also observed as nano-ZR attained an appropriate wettability index. Treated samples showed higher in vitro bovine serum albumin (BSA) adsorption, initial adhesion of bone marrow and endothelial vascular cells, high alkaline phosphatase activity, and increased expression of bone dierentiation-related factors. Furthermore, the in vivo performance of treated nano-ZR was evaluated by implantation in the femur of male Sprague–Dawley rats. The results showed that the amount of bone formed after the plasma treatment of alkali-modified nano-ZR was higher than that of untreated nano-ZR. Thus, induction of superhydrophilicity in nano-ZR via atmospheric pressure plasma treatment aects bone marrow and vascular cell adhesion and promotes bone formation without altering other surface properties.
2021年度
連携機関・データベース国立情報学研究所 : 学術機関リポジトリデータベース(IRDB)(機関リポジトリ)