並列タイトル等An approach to cellular decompositions of hyperbolic manifolds based on variational principles
タイトル(掲載誌)平成26(2014)年度 科学研究費補助金 基盤研究(C) 研究成果報告書 = 2014 Fiscal Year Final Research Report
一般注記金沢大学理工研究域数物科学系
変分原理と呼ばれる、与えられた関数の族のなかで最適なものを一定の条件下で求めるための一つの考え方が知られている。この方法を主に用い、双曲多様体と呼ばれる幾何学的対象を適切に分割する方法を求めるのが、本研究の目的であった。研究期間内の成果として、orthoscheme と呼ばれる四面体の体積の変化が、ユークリッド空間内の四面体の体積の変化とは異なることを示すことができた。この四面体は、双曲多様体の分割にも用いられる。この結果は、変分原理の一種である Schlaefli の公式を活用して得られたものである。この結果を研究論文として発表するとともに、国内外の研究集会で発表した。
A variational principle is a principle that is used to obtain a “best” solution of a given family of functions. The purpose of this research project was set to obtain a sufficient decomposition of a hyperbolic manifold, which is a subject of geometry, using a variational principle.During this research project, I published a research article about a behavior of the volumes of orthoschemes, that is used to decompose hyperbolic manifolds and is a generalization of pyramids in the Euclidean space. Its main result explains the difference of the behavior of the volume from the Euclidean one, when the “height” of the orthoscheme varies. This research was obtained from the Schlaefli formula, a variation of the variational principle with respect to the hyperbolic volume form. Not only publishing the result, it was also presented in domestic and international conferences for mathematics.
研究課題/領域番号:24540071, 研究期間(年度):2012-04-01 - 2015-03-31
関連情報https://kaken.nii.ac.jp/search/?qm=50323803
https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-24540071/
https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-24540071/24540071seika/
連携機関・データベース国立情報学研究所 : 学術機関リポジトリデータベース(IRDB)(機関リポジトリ)