タイトル(掲載誌)平成8(1996)年度 科学研究費補助金 奨励研究(A) 研究概要 = 1996 Research Project Summary
一般注記出版タイプ: AM
金沢大学理工研究域電子情報通信学系
本研究は、機械学習において、与えられた例題の数と機械の性能の関係を、情報幾何学的手法により理論的に解決しようというものである。本研究では、学習の良さの評価に予測誤差を用いる。予測誤差とは、新規の問題がランダムに選ばれて与えられた時の機械の出力誤差の期待値である。その値は与えられた例題に依存するので、例題もランダムに選ばれるとしてその期待値をとる。それにより、予測誤差は与えられた例題数の関数になる。パラメータに対して出力が滑らかな関数である機械の予測誤差はパラメータ数m、例題数tの時にm/tとなることが知られているが、滑らかでない機械で最も単純な、線形分離機械では0.66m/tになることが実験的に知られている。そこで、線形分離機械の予測誤差を調べた。線形分離機械では与えられた例題が半球面上の点群になることを利用し、積分幾何学を用いて点群の凸包の面の数の期待値を求め、これとオイラの関係式から予測誤差の新しいバウンドを導いた。また、与えられたデータが不完全である場合についても考察した。不完全データから、欠損部分とパラメータの双方を反復的に推定する方法として、EMアルゴリズムがよく知られている。本研究では、例題数が大きく漸近論が適用可能である場合に、EMアルゴリズムで推定されたパラメータがどのような分布に従うかを調べた。その結果、真のパラメータを推定モデル空間に射影した点を中心とする正規分布をすることがわかった。原理的には、推定パラメータの分布から予測誤差が求められるのであるが、分布自体が複雑な式で表されるために予測誤差の導出には至らなかった。これが今後の課題である。
研究課題/領域番号:08780255, 研究期間(年度):1996
出典:研究課題「機械学習の情報幾何学的解析」課題番号08780255(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) (https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-08780255/)を加工して作成
関連情報https://kaken.nii.ac.jp/ja/search/?kw=10262552
https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-08780255/
連携機関・データベース国立情報学研究所 : 学術機関リポジトリデータベース(IRDB)(機関リポジトリ)