本資料は、掲載誌(URI)等のリンク先にある学位授与機関のWebサイトやCiNii Dissertationsから、本文を自由に閲覧できる場合があります。
博士論文
国立国会図書館館内限定公開
収録元データベースで確認する
国立国会図書館デジタルコレクション
デジタルデータあり
公開元のウェブサイトで確認する
DOI[10.15002/00013955]のデータに遷移します
Research on Homogeneous and Heterogeneous Particle Swarm Optimization for Global Optimization Problems
- 国立国会図書館永続的識別子
- info:ndljp/pid/10371428
- 資料種別
- 博士論文
- 著者
- YANG, Shiqin
- 出版者
- -
- 出版年
- 2017-03-24
- 資料形態
- デジタル
- ページ数・大きさ等
- -
- 授与大学名・学位
- 法政大学 (Hosei University),博士(理学)
国立国会図書館での利用に関する注記
資料に関する注記
一般注記:
- type:ThesisThe premature convergence problem and the exploration-exploitation trade-off problem are the two major problems encountered by many swarm i...
書店で探す
障害者向け資料で読む
目次
2019-01-04 再収集
2019-01-04 再収集
2023-09-04 再収集
2023-09-04 再収集
2024-02-02 再収集
書店で探す
障害者向け資料で読む
書誌情報
この資料の詳細や典拠(同じ主題の資料を指すキーワード、著者名)等を確認できます。
デジタル
- 資料種別
- 博士論文
- 著者・編者
- YANG, Shiqin
- 著者標目
- 出版年月日等
- 2017-03-24
- 出版年(W3CDTF)
- 2017-03-24
- 並列タイトル等
- 大域的最適化問題のための同種および異種粒子群最適化法の研究
- 授与機関名
- 法政大学 (Hosei University)
- 授与年月日
- 2017-03-24
- 授与年月日(W3CDTF)
- 2017-03-24
- 報告番号
- 甲第399号
- 学位
- 博士(理学)
- 博論授与番号
- 甲第399号
- 本文の言語コード
- eng
- 対象利用者
- 一般
- 一般注記
- type:ThesisThe premature convergence problem and the exploration-exploitation trade-off problem are the two major problems encountered by many swarm intelligence algorithms in both global optimization and large scale global optimization. This thesis proposes that the two main problems could be handled by several variants of Particle Swarm Optimization (PSO) developed below. Five variants of homogeneous PSO have been developed for multimodal and large scale global optimization problems, and two variants of dynamic heterogeneous PSO for complex real-world problems.First of all, an individual competition strategy is proposed for the new variant of PSO, namely Fitness Predator Optimization (FPO), for multimodal problems. The development of individual competition plays an important role for the diversity conservation in the population, which is crucial for preventing premature convergence in multimodal optimization.To enhance the global exploration capability of the FPO algorithm for high multimodality problems, a modified paralleled virtual team approach is developed for FPO, namely DFPO. The main function of this dynamic virtual team is to build a paralleled information-exchange system, strengthening the swarm's global searching effectiveness. Furthermore, the strategy of team size selection is defined in DFPO named as DFPO-r, which based on the fact that a dynamic virtual team with a higher degree of population diversity is able to help DFPO-ralleviate the premature convergence and strengthen the global exploration simultaneously. Experimental results demonstrate that both DFPO-r and DFPO have desirable performances for multimodal functions. In addition, DFPO-r has a more robust performance in most cases compared with DFPO.Using hybrid algorithms to deal with specific real-world problems is one of the most interesting trends in the last years. In this thesis, we extend the FPO algorithm for fuzzy clustering optimization problem. Thus, a combination of FPO with FCM (FPO-FCM) algorithm is proposed to avoid the premature convergence and improve the performance of FCM.To handle the large scale global optimization problem, a variant of modified BBPSO algorithm incorporation of Differential Evolution (DE) approach, namely BBPSO-DE, is developed to improve the swarm's global search capability as the dimensionality of the search space increases. To the best of our knowledge, the Static Heterogeneous PSO (SHPSO) has been studied by some researchers, while the Dynamic Heterogeneous PSO (DHPSO) is seldom systematically investigated based on real problems. In this thesis, two variants of dynamic Heterogeneous PSO, namely DHPSO-d and DHPSO-p are proposed for complex real-world problems. In DHPSO-d, several differential update rules are proposed for different particles by the trigger event. When the global best position p_g is considered stagnant and the event is confirmed, then p_g is reset and all particles update their positions only by their personal experience. In DHPSO-p, two proposed types of topology models provide the particles different mechanism choosing their informers when the swarm being trapped in the local optimal solution. The empirical study of both variants shows that the dynamic self-adaptive heterogeneous structure is able to effectively address the exploration-exploitation trade-off problem and provide excellent optimal solutions for the complex real-world problem.To conclude,the proposed biological metaphor approaches provide each of the PSO algorithms variants with different search characteristics, which makes them more suitable for different types of real-world problems.
- DOI
- 10.15002/00013955
- 国立国会図書館永続的識別子
- info:ndljp/pid/10371428
- コレクション(共通)
- コレクション(障害者向け資料:レベル1)
- コレクション(個別)
- 国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
- 収集根拠
- 博士論文(自動収集)
- 受理日(W3CDTF)
- 2017-07-03T04:10:06+09:00
- 作成日(W3CDTF)
- 2018-07-09
- 記録形式(IMT)
- PDFapplication/pdf
- オンライン閲覧公開範囲
- 国立国会図書館内限定公開
- デジタル化資料送信
- 図書館・個人送信対象外
- 遠隔複写可否(NDL)
- 可
- 連携機関・データベース
- 国立国会図書館 : 国立国会図書館デジタルコレクション