博士論文
国立国会図書館館内限定公開
収録元データベースで確認する
国立国会図書館デジタルコレクション
デジタルデータあり
公開元のウェブサイトで確認する
DOI[10.24561/00018484]のデータに遷移します
Development of efficient polymer-supported catalytic systems for the synthesis of cyclic carbonates
- 国立国会図書館永続的識別子
- info:ndljp/pid/11278509
国立国会図書館での利用に関する注記
本資料は、掲載誌(URI)等のリンク先にある学位授与機関のWebサイトやCiNii Dissertationsから、本文を自由に閲覧できる場合があります。
資料に関する注記
一般注記:
- type:textChapter 1 is the introduction of carbon dioxide (CO2) and cyclic organic carbonate. Considering CO2 is a renewable carbon feed stock, the cat...
書店で探す
障害者向け資料で読む
全国の図書館の所蔵
国立国会図書館以外の全国の図書館の所蔵状況を表示します。
所蔵のある図書館から取寄せることが可能かなど、資料の利用方法は、ご自身が利用されるお近くの図書館へご相談ください
書店で探す
障害者向け資料で読む
書誌情報
この資料の詳細や典拠(同じ主題の資料を指すキーワード、著者名)等を確認できます。
デジタル
- 資料種別
- 博士論文
- タイトル
- 著者・編者
- 王, 相勇
- 著者標目
- 出版年月日等
- 2018
- 出版年(W3CDTF)
- 2018
- 並列タイトル等
- 環状カーボネート合成のための効率的なポリマー担持触媒系の開発
- タイトル(掲載誌)
- 博士論文(埼玉大学大学院理工学研究科(博士後期課程))
- 授与機関名
- 埼玉大学
- 授与年月日
- 2018-03-23
- 授与年月日(W3CDTF)
- 2018-03-23
- 報告番号
- 甲第1086号
- 学位
- 博士(学術)
- 博論授与番号
- 甲第1086号
- 本文の言語コード
- eng
- 件名標目
- 対象利用者
- 一般
- 一般注記
- type:textChapter 1 is the introduction of carbon dioxide (CO2) and cyclic organic carbonate. Considering CO2 is a renewable carbon feed stock, the catalytic conversion of CO2 and epoxides to cyclic organic carbonates is a highly attractive 100% atom economic reaction. It represents a greener and safer alternative to the conventional synthesis of cyclic carbonates from diols and toxic phosgene. Today, cyclic carbonates show many applications as intermediates for fine chemical synthesis, as electrolytes in Li-ion batteries, and as polar aprotic solvents, and also serve for the synthesis of important polymers such as polycarbonates and polyurethanes. However, CO2 is a thermodynamically stable molecule, and the use of catalysts is therefore mandatory for activating and facilitating the CO2/epoxide coupling reaction in a selective manner and under mild conditions. The development of new catalysts and catalytic systems for this atom-economic, scalable, and industrially relevant reaction is a highly active research field. Recently organocatalysts have attracted more and more interest in this field and are viewed as alternatives to metal-based ones. Enormous progress has been made these past few years to boost their performances, and some organocatalysts are now very competitive, cheap, readily available and exhibit good chemical stability. Hence, metal-free, active and easy-to-handle catalytic systems for the cycloaddition reaction of CO2 and epoxides at a low reaction temperature and pressure remain to be developed. We focused on developing polymer-supported organocatalytic systems using inexpensive and commercially available epoxides to get the cyclic carbonates under solvent-free, atmospheric pressure of CO2 and moderate temperature conditions. Herein, four different type of organocatalytic systems with good activity for the chemical fixation of CO2 into cyclic carbonates were developed. Firstly, in chapter 2, two polymer having benzyl bromide or chloride unit catalysts poly(4-vinylbenzylchloride) (PVBC) and poly(4-vinylbenzylbromide) (PVBB) were prepared, and we have examined PVBC or PVBB/DMF and PVBC or PVBB/DBU systems catalytic activity for the synthesis of cyclic carbonates by reacting styrene oxide or 1,2-epoxyhexane with CO2 under mild condition (1 atm CO2, 70-120℃). Secondly, in chapter 3, a novel polymer-supported catalyst P1 with 2-pyridinemethanol moiety for the cycloaddition of CO2 and epoxides using tetra-n-butylammonium iodide (TBAI) as a co-catalyst was developed for the synthesis of cyclic carbonates from CO2 and epoxides under mild conditions (1 atm CO2, 40-60℃). The effects of the reaction conditions such as reaction temperature, time, and the amount of catalyst used, were systematically investigated. The reactivity of catalytic system was investigated and showed moderate activity for most of epoxides. Thirdly, in chapter 4, an efficient and practical organocatalytic system comprising 3-hydroxypyridine and TBAI was developed for the synthesis of cyclic carbonates from CO2 and epoxides under mild conditions (1 atm CO2, 25-60℃) without organic solvent. By comparing with related hydroxypyridine derivatives, the effects of the hydroxyl group, the acidity and the steric factor, were discussed. Study on the mixtures of CO2 and N2 in various ratios indicated that the yield depends on CO2 content, due to the solubility of CO2 in the reaction mixture. The system was also shown not to be deteriorated by the presence of H2O, air or O2. Fourthly, in chapter 5, an efficient polymer-based catalytic system of poly(4-vinylphenol) (PVP) and TBAI was developed for the synthesis of cyclic carbonates from epoxides and CO2. Owing to the synergistic effects of hydroxyl groups and iodide anions, this commercially available and metal-free system was highly active for the reaction of various terminal epoxides under environmentally benign conditions, at 25-60℃ and atmospheric pressure of CO2, without the use of any organic solvents. The catalytic system can be easily separated by adding ether, and its ability was recovered by treating it with 40% CH3CO2H aq. The recyclability was investigated in detail for three substrates, epichlorohydrin, 1,2-epoxyhexane and styrene oxide, using 1H nuclear magnetic resonance (NMR) analysis.AbstractAbbreviationsPublication List ContentsChapter 1 Introduction .................................................................................................................................... 1 1.1. Emission of CO2 ............................................................................................................................... 1 1.2. CO2 as chemical feedstock ............................................................................................................... 1 1.3. Synthesis of cyclic carbonate from CO2 ........................................................................................... 4 1.4. Cyclic carbonate synthesis catalyzed by metal-based catalytic systems .......................................... 4 1.5. Cyclic carbonate synthesis catalyzed by homogeneous metal-free organocatalysts ........................ 6 1.6. Mechanism of cyclic carbonates synthesis from epoxides and CO2 ................................................ 8 1.7. Our previous catalytic systems ....................................................................................................... 10 1.8. Aim of the thesis ............................................................................................................................. 10 1.9. References ...................................................................................................................................... 11Chapter 2 Development of a polymer catalyst having benzyl bromide or chloride unit for the synthesis of cyclic carbonates from carbon dioxide and epoxides .................................................................................... 14 2.1. Introduction .................................................................................................................................... 14 2.2. Results and discussion .................................................................................................................... 15 2.2.1. The synthesis of polymer ..................................................................................................... 15 2.2.2. The application of PVBB and PVBC .................................................................................. 15 2.3. Conclusion ...................................................................................................................................... 17 2.4. Experimental .................................................................................................................................. 18 2.4.1. General procedure for synthesis of polymer ........................................................................ 18 2.4.2. General procedure for synthesis of cyclic carbonates from CO2 and epoxides ................... 20 2.4.3. Recyclability study .............................................................................................................. 20 2.4.4. 1H and 13C NMR spectra for PVBC and PVBB .................................................................. 20 2.5. References ...................................................................................................................................... 23Chapter 3 Development of a polymer having 2-pyridinemethanol unit for the synthesis of cyclic carbonates from carbon dioxide and epoxides ................................................................................................................ 24 3.1. Introduction .................................................................................................................................... 24 3.2. Results and discussion .................................................................................................................... 25 3.2.1. Synthesis and structure characterization.............................................................................. 25 3.2.2. Variation of reaction parameters .......................................................................................... 25 3.3. Conclusion ...................................................................................................................................... 28 3.4. Experimental .................................................................................................................................. 28 3.4.1. Procedure for synthesis of P1 .............................................................................................. 28 3.4.2. General procedure for synthesis of cyclic carbonates from CO2 and epoxides ................... 29 3.4.3. Representative procedure for the cyclic carbonate formation ............................................. 29 3.4.4. 1H NMR and IR spectra of P1 ............................................................................................. 32Chapter 4 Development of an efficient and practical organocatalytic system 3-hydroxypyridine/TBAI for the synthesis of cyclic carbonates from CO2 and epoxides ........................................................................... 34 4.1. Introduction .................................................................................................................................... 34 4.2. Results and discussion .................................................................................................................... 35 4.2.1. Reaction with hydroxypyridine-TBAI systems ................................................................... 35 4.2.2. Optimization of the reaction conditions .............................................................................. 38 4.2.3. Cycloaddition of CO2 to various epoxides .......................................................................... 40 4.2.4. Effect of water and other gas components in CO2 ............................................................... 42 4.3. Conclusions .................................................................................................................................... 44 4.4. Experimental .................................................................................................................................. 44 4.4.1. General procedure for the synthesis of cyclic carbonates from CO2 and epoxides ............. 45 4.4.2. Representative procedure for the cyclic carbonate formation ............................................. 45 4.5. References ...................................................................................................................................... 50Chapter 5 Development of an efficient polymer organocatalytic system poly(4-vinylphenol)/TBAI for synthesis of cyclic carbonates from CO2 and epoxides ................................................................................. 52 5.1. Introduction .................................................................................................................................... 52 5.2. Results and discussion .................................................................................................................... 53 5.2.1. The synthesis of PVP........................................................................................................... 53 5.2.2. Effect of reaction temperature ............................................................................................. 54 5.2.3. Effect of catalyst amount ..................................................................................................... 55 5.2.4. Effect of reaction time ......................................................................................................... 56 5.2.5. Effect of co-catalyst ............................................................................................................. 57 5.2.6. Cycloaddition of CO2 and various epoxides........................................................................ 59 5.2.7. Early-stage kinetic comparison between 1,2-epoxyhexane (1a), epichlorohydrin (3a), and styrene oxide (4a) .......................................................................................................................... 59 5.2.8. Recyclability of PVP-TBAI catalytic system ...................................................................... 60 5.2.9. Effect of CO2 content .......................................................................................................... 64 5.3. Conclusions .................................................................................................................................... 65 5.4. Experimental .................................................................................................................................. 66 5.4.1. Synthesis of Poly(4-vinylphenol) ........................................................................................ 67 5.4.2. General procedure for synthesis of cyclic carbonates from CO2 and epoxides ................... 68 5.4.3. Recycling experiments ........................................................................................................ 68 5.4.4. Representative procedure for the cyclic carbonate formation ............................................. 68 5.4.5. 1H and 13C NMR spectra of 4-vinylphenol and poly(4-vinylphenol) .................................. 72 5.5. References ...................................................................................................................................... 73Chapter 6 Summary and outlook ................................................................................................................... 76Acknowledgements ....................................................................................................................................... 78Supplementary data: 1H and 13C NMR spectra of cyclic carbonates............................................................. 79主指導教員 : 廣瀬卓司
- DOI
- 10.24561/00018484
- 国立国会図書館永続的識別子
- info:ndljp/pid/11278509
- コレクション(共通)
- コレクション(障害者向け資料:レベル1)
- コレクション(個別)
- 国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
- 収集根拠
- 博士論文(自動収集)
- 受理日(W3CDTF)
- 2019-05-06T10:27:56+09:00
- 作成日(W3CDTF)
- 2019-02-08
- 記録形式(IMT)
- application/pdf
- オンライン閲覧公開範囲
- 国立国会図書館内限定公開
- デジタル化資料送信
- 図書館・個人送信対象外
- 遠隔複写可否(NDL)
- 可
- 連携機関・データベース
- 国立国会図書館 : 国立国会図書館デジタルコレクション