博士論文
国立国会図書館館内限定公開
収録元データベースで確認する
国立国会図書館デジタルコレクション
デジタルデータあり
公開元のウェブサイトで確認する
DOI[10.24561/00019146]のデータに遷移します
The changes of elastic wave propagation in the process of rainfall induced slope surface failure
- 国立国会図書館永続的識別子
- info:ndljp/pid/11659394
国立国会図書館での利用に関する注記
本資料は、掲載誌(URI)等のリンク先にある学位授与機関のWebサイトやCiNii Dissertationsから、本文を自由に閲覧できる場合があります。
資料に関する注記
一般注記:
- type:textRainfall-induced landslides commonly occur in mountainous areas and cause severe human and infrastructural damage around the world. Most of t...
書店で探す
障害者向け資料で読む
全国の図書館の所蔵
国立国会図書館以外の全国の図書館の所蔵状況を表示します。
所蔵のある図書館から取寄せることが可能かなど、資料の利用方法は、ご自身が利用されるお近くの図書館へご相談ください
書店で探す
障害者向け資料で読む
書誌情報
この資料の詳細や典拠(同じ主題の資料を指すキーワード、著者名)等を確認できます。
デジタル
- 資料種別
- 博士論文
- タイトル
- 著者・編者
- 陶, 尚寧
- 著者標目
- 出版年月日等
- 2020
- 出版年(W3CDTF)
- 2020
- 並列タイトル等
- 斜面が豪雨によって表層崩壊する過程の弾性波伝播の変化
- タイトル(掲載誌)
- 博士論文(埼玉大学大学院理工学研究科(博士後期課程))
- 授与機関名
- 埼玉大学
- 授与年月日
- 2020-03-23
- 授与年月日(W3CDTF)
- 2020-03-23
- 報告番号
- 甲第1163号
- 学位
- 博士(学術)
- 博論授与番号
- 甲第1163号
- 本文の言語コード
- eng
- 件名標目
- 対象利用者
- 一般
- 一般注記
- type:textRainfall-induced landslides commonly occur in mountainous areas and cause severe human and infrastructural damage around the world. Most of the previous landslides have occurred at shallow depths, generally less than 3 m, and the average thickness of the failed surface layer was 1.2 m. To mitigate damage caused by rainfall-induced landslides, physical countermeasures such as retaining walls, ground anchors and dewater systems are common, however, they are not economically feasible for the amount of potentially unstable slope. Therefore, landslide early warning systems are an alternative soft countermeasure that can provide an efficient and economical way to reduce the damage of landslides. A typical landslide early warning system is based on monitoring of soil moisture and pore pressure, or on measuring mass movement events by linear displacement transducers, inclinometers or extensometers, or measuring both the soil moisture and the displacement by soil moisture sensors and tilt sensors. These methods have recently been used because they are simple and easy to install in the slope surface layer. However, they can only sense the local area surrounding the position of the sensor. To cover a wide area of unstable slope, many sensors are required. Elastic wave propagation in soil as a non-destructive monitoring technique has received considerable attention in recent years. The application of elastic wave propagation in soil has been developed by many researchers, for example, shear waves were measured in laboratory specimens by means of piezoelectric transducers, and recently, both shear wave (S-wave) and compression wave (P-wave) velocities were designed to measure the unsaturated soil. It was found that both P-wave and S-wave velocities decreased by nearly half when soil saturation was increased from 20% to 80% in laboratory triaxial experiments. A series of model experiments found that elastic wave velocities continuously decreased in response to moisture content and deformation.In this study, a method of evaluating slope shear deformation and soil moisture by elastic wave is presented. Elastic wave devices include an exciter and several receivers that are laid out within the slope surface layer to cover a relatively deep and wide area. To extend the former research, three main points have been improved in this study. Firstly, an exciter has been developed that can automatically generate clear and powerful elastic wave signals to propagate more than 1 m in soil. Secondly, an algorithm has been developed that can process the huge number of wave signals, and automatically detect the travel time and calculate the wave velocities. Thirdly, a fullscale multi-layer shear model was used to simulate the process of slope failure and observe the wave propagation. The detailed behavior of elastic wave propagation in soil over a wide range of soil moisture, shear stress, and shear deformation, can be explored. A series of tests were designed to reproduce the slope failure. The factors affect on elastic wave velocity have been confirmed.In this study, not only the elastic wave velocities but also the wave attenuation has been investigated. A method using wave attenuation is presented to monitor slope deformations and soil moisture variations. It is an application of geometric spreading, which is as the wave moves away from the source, the area that the wave energy covers become larger and thus wave intensity decreases, and wave energy loss due to inelastic material behavior or internal friction during wave propagation. Laboratory experiments using a Multi-layer shear model were conducted, wave attenuation affected by shear forces corresponding with deformations on every layer, and the soil moistures in wet and dry processes have been analyzed.To investigate the behavior of elastic wave propagation in the natural slope surface layer, elastic wave monitoring has been conducted at a slope located at Aso-shi, Kumamoto, Japan. This slope was suffered from the 2016 Kumamoto Earthquakes and some big cracks appeared on the slope surface. It is a typically unstable slope. The elastic wave monitoring devices include a fully automatic to generate elastic wave by the exciter, measure the wave signal by receivers. The layout of sensors and exciter underground and the monitoring parameters such as velocities, soil moisture, deformation from the tilt sensor are shown in detail. Elastic wave velocities and attenuation behaviors with soil moisture on-site is similar to laboratory experiments.These findings show that monitoring the wave propagation in a slope surface layer can indicate the status of soil moisture content and shear deformation. Slope instabilities may be predicted based on the historical record. Monitoring the changes in elastic waves in the slope surface layer is valuable and can be applied to an early warning system.ABSTRACT ............................................................................................................................. iACKNOWLEDGEMENT ...................................................................................................... ivTABLE OF CONTENTS ....................................................................................................... vi1. DISSERTATION OVERVIEW .................................................................................... 1-1 1.1 Introduction .......................................................................................................... 1-1 1.2 Motivation & Significance ..................................................................................... 1-2 1.3 Problem Statement ............................................................................................... 1-3 1.4 Aims & Objectives ................................................................................................. 1-4 1.5 Scope of Work and Limitations ............................................................................. 1-5 1.6 Unit System ........................................................................................................... 1-6 1.7 Time Scale and Location of Research ................................................................... 1-6 1.8 Thesis Organization .............................................................................................. 1-7 1.9 References ............................................................................................................. 1-82. LITERATURE REVIEW .............................................................................................. 2-1 2.1 Introduction .......................................................................................................... 2-1 2.2 Rain-induced Slope Failures ................................................................................. 2-1 2.3 Mechanism of Rain-induced Landslides ............................................................... 2-2 2.4 Landslide Early Warning Systems ......................................................................... 2-2 2.5 Elastic Wave Propagation in Soil .......................................................................... 2-3 2.6 Factors Affecting Elastic Wave Propagation in Soil .............................................. 2-4 2.6.1 Effective Stress State...................................................................................... 2-4 2.6.2 Void Ratio ...................................................................................................... 2-5 2.6.3 Degree of Saturation ...................................................................................... 2-6 2.7 Wave Attenuation ............................................................................................... 2-11 2.8 Case Study of Monitoring Shear Deformation On-site ...................................... 2-13 2.9 Summary ............................................................................................................. 2-13 2.10 References ........................................................................................................... 2-143. EXPERIMENTAL SETUP ........................................................................................... 3-1 3.1 Introduction .......................................................................................................... 3-1 3.2 Model Experiment ................................................................................................. 3-2 3.2.1 The Concept of Multi-layer Shear Model ...................................................... 3-2 3.2.2 Multi-layer Shear Model ................................................................................ 3-3 3.2.3 Sensors Layout ............................................................................................... 3-4 3.2.4 Data Acquisition System ................................................................................ 3-4 3.2.5 Measuring Devices ........................................................................................ 3-6 3.2.6 Rainfall Simulation System .......................................................................... 3-13 3.2.7 Calibration of Soil Moisture Sensor ............................................................. 3-14 3.3 Elastic wave Monitoring System on-site ............................................................. 3-16 3.4 Summary ............................................................................................................. 3-18 3.5 References ........................................................................................................... 3-194. MATERIALS & METHODOLOGY ............................................................................ 4-1 4.1 Tested Material ..................................................................................................... 4-1 4.1.1 Physical Properties of Tested Material .......................................................... 4-2 4.1.2 Determine Soil Strength by Direct Shear Test .............................................. 4-2 4.2 Experimental Procedures ...................................................................................... 4-9 4.3 Confirm the Elastic Wave Signals ....................................................................... 4-13 4.4 Summary ............................................................................................................. 4-18 4.5 References ........................................................................................................... 4-185. Factors Affect on elastic wave velocities in slope surface layer .................................... 5-1 5.1. Introduction .......................................................................................................... 5-1 5.2. Method to Calculate the Wave Velocities ............................................................. 5-2 5.3. Test Conditions ..................................................................................................... 5-6 5.4. Test results ............................................................................................................ 5-8 5.4.1 Normal Stress Effects on Elastic Wave Velocities .......................................... 5-8 5.4.2 The Effects of Soil Moisture on Elastic Wave Velocities ............................. 5-13 5.4.3 The Effects of Shear Stress on Elastic Wave Velocities ............................... 5-21 5.4.4 Elastic Wave Velocities and Shear Displacement ........................................ 5-24 5.4.5 Elastic Wave Velocities and Shear Strain ..................................................... 5-26 5.4.6 Elastic Wave Velocities in 10-Layer Model (Capillary Barriers) ................. 5-30 5.4.7 Summarize the Factors Effect on Elastic Wave Velocities ........................... 5-38 5.4.8 Verification of the Factors Effect on Elastic Wave Velocities ...................... 5-38 5.5. Summary ............................................................................................................. 5-41 5.6. Reference ............................................................................................................ 5-426. Elastic Wave Attenuation in Shallow Slope .................................................................. 6-1 6.1. Introduction .......................................................................................................... 6-1 6.2. Method to Calculate the Wave Attenuation .......................................................... 6-2 6.2.1 The Sensors Layout ....................................................................................... 6-2 6.2.2 Fast Fourier Transformation ......................................................................... 6-2 6.2.3 Elastic Wave Attenuation ............................................................................... 6-3 6.3. Test Conditions ..................................................................................................... 6-4 6.4. Test Result ............................................................................................................ 6-5 6.4.1 Soil Moisture and Wave Energy Ratio ........................................................... 6-5 6.4.1 Shear Stress Effect on Wave Energy Ratio ..................................................... 6-5 6.4.2 Shear Displacement Effect on Wave Energy RSatio ...................................... 6-9 6.5. Summary ............................................................................................................. 6-10 6.6. Reference ............................................................................................................ 6-107. Monitoring Elastic Wave in Natural Slope ................................................................... 7-1 7.1 Introduction .......................................................................................................... 7-1 7.2 Measure the Thickness of Slope Surface Layer ..................................................... 7-4 7.2.1 Portable Dynamic Cone Penetrometer Test ................................................. 7-4 7.2.2 Seismic Refraction Method ............................................................................ 7-4 7.2.3 The Thickness and strength of Surface Layer ............................................... 7-6 7.3 Wave Energy Attenuation with Distance .............................................................. 7-9 7.3.1 Elastic Wave Energy ...................................................................................... 7-9 7.3.2 Exciter Energy .............................................................................................. 7-11 7.3.3 The Results .................................................................................................. 7-11 7.4 Physical properties .............................................................................................. 7-14 7.5 Elastic Wave Monitoring On-Site ....................................................................... 7-15 7.4.1 Case 1 Wave Attenuation Behaviors with Soil Moisture ............................. 7-15 7.4.2 Case 2 Wave Velocities Behaviors with Soil Moisture ................................. 7-19 7.6 Summary ............................................................................................................. 7-23 7.7 Reference ............................................................................................................ 7-248. Conclusions & Recommendations ................................................................................ 8-1 8.1. Introduction .......................................................................................................... 8-1 8.2. Conclusions ........................................................................................................... 8-2 8.2.1 Factors Effect on Wave Velocities in a Slope Surface Layer .......................... 8-2 8.2.2 Wave Attenuation Changes in a Shallow Slope ............................................. 8-3 8.2.3 Elastic Wave Monitoring on Natural Slope Surface layer .............................. 8-4 8.3. Recommendations for Future Research ................................................................ 8-5List of Figures ......................................................................................................................... ixList of Tables ....................................................................................................................... xvii指導教員 : 内村太郎
- DOI
- 10.24561/00019146
- 国立国会図書館永続的識別子
- info:ndljp/pid/11659394
- コレクション(共通)
- コレクション(障害者向け資料:レベル1)
- コレクション(個別)
- 国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
- 収集根拠
- 博士論文(自動収集)
- 受理日(W3CDTF)
- 2021-04-07T03:01:57+09:00
- 作成日(W3CDTF)
- 2021-01-26
- 記録形式(IMT)
- application/pdf
- オンライン閲覧公開範囲
- 国立国会図書館内限定公開
- デジタル化資料送信
- 図書館・個人送信対象外
- 遠隔複写可否(NDL)
- 可
- 連携機関・データベース
- 国立国会図書館 : 国立国会図書館デジタルコレクション