博士論文
Development and Accuracy Analysis of a Human Motion Capturing Method Using a Single IR Camera
国立国会図書館館内限定公開
収録元データベースで確認する
国立国会図書館デジタルコレクション
デジタルデータあり
公開元のウェブサイトで確認する
DOI[10.14943/doctoral.k14752]のデータに遷移します
Development and Accuracy Analysis of a Human Motion Capturing Method Using a Single IR Camera
- 国立国会図書館永続的識別子
- info:ndljp/pid/12154403
- 資料種別
- 博士論文
- 著者
- Bilesan, Alireza
- 出版者
- Hokkaido University
- 出版年
- 2021-12-24
- 資料形態
- デジタル
- ページ数・大きさ等
- -
- 授与大学名・学位
- 北海道大学,博士(情報科学)
国立国会図書館での利用に関する注記
本資料は、掲載誌(URI)等のリンク先にある学位授与機関のWebサイトやCiNii Dissertationsから、本文を自由に閲覧できる場合があります。
資料に関する注記
一般注記:
- Motion capture systems are used to measure the kinematic features of motion in numerous fields of research. Despite the high accuracy of commercial sy...
資料詳細
要約等:
- Motion capture systems are used to measure the kinematic features of motion in numerous fields of research. Despite the high accuracy of commercial sy...
書店で探す
障害者向け資料で読む
全国の図書館の所蔵
国立国会図書館以外の全国の図書館の所蔵状況を表示します。
所蔵のある図書館から取寄せることが可能かなど、資料の利用方法は、ご自身が利用されるお近くの図書館へご相談ください
その他
北海道大学学術成果コレクション
デジタル連携先のサイトで、学術機関リポジトリデータベース(IRDB)(機関リポジトリ)が連携している機関・データベースの所蔵状況を確認できます。北海道大学学術成果コレクションのサイトで この本を確認
書店で探す
障害者向け資料で読む
書誌情報
この資料の詳細や典拠(同じ主題の資料を指すキーワード、著者名)等を確認できます。
デジタル
- 資料種別
- 博士論文
- 著者・編者
- Bilesan, Alireza
- 著者標目
- 出版年月日等
- 2021-12-24
- 出版年(W3CDTF)
- 2021-12-24
- 並列タイトル等
- 単眼IRカメラを用いた人間のモーションキャプチャー手法の開発と精度解析
- 寄与者
- 近野, 敦田中, 孝之五十嵐, 一
- 授与機関名
- 北海道大学
- 授与年月日
- 2021-12-24
- 授与年月日(W3CDTF)
- 2021-12-24
- 報告番号
- 甲第14752号
- 学位
- 博士(情報科学)
- 博論授与番号
- 甲第14752号
- 本文の言語コード
- eng
- NDC
- 対象利用者
- 一般
- 一般注記
- Motion capture systems are used to measure the kinematic features of motion in numerous fields of research. Despite the high accuracy of commercial systems, these systems are costly and used in limited conditions. Kinect has been proposed as a low-cost markerless motion capture sensor, and its accuracy has been assessed compared to previous motion capture systems like Vicon and OptiTrack. Kinect comes with a software development kit (SDK) that helps determine the human skeleton structure from the point cloud of the body using machine learning algorithms. Since the Kinect skeleton model detected by the SDK is different from the skeleton model estimated by the traditional motion capture systems, the incompatibilities in determining the human joint angles in different motion capture systems can cause imprecision in the accuracy assessment results reported in previous researches. To achieve a proper accuracy evaluation of the Kinect as a motion capture camera,we applied the inverse kinematics techniques in both skeleton models represented by Kinect and a traditional system (Vicon) to estimate lower body joint angles of a human during gait. The results indicated acceptable accuracy for Kinect in tracking knee and hip flex-extension angles using Vicon data as the true value. However, Kinect showed major errors in capturing delicate motions like ankle and pelvic joint angles. We developed a marker-based motion capture system using the Kinect IR camera to overcome these inaccuracies in human motion capture using Kinect skeleton. We introduced joint use of the Kinect IR camera as a pinhole camera model and its depth data in order to determine the 3-dimensional coordinates of retroreflective markers placed on the leg of a humanoid robot. This method helped us estimate the ankle joint angle of the robot accurately, which paved the way for a breakthrough in capturing other delicate joint angles.Due to the limited number of detected joints by the Kinect algorithm and the inaccuracy in estimating the 3D position of the joints'centers, Kinect could not achieve the same level of accuracy as traditional systems. Joint use of the Kinect skeleton algorithm and Kinect-based marker tracking method was developed to track the 3D coordinates of multiple landmarks on human subjects using a single Kinect. By applying the joint constraints and inverse kinematics techniques on the acquired landmarks’ 3D positions, the motion’s kinematic parameters of five human subjects and a humanoid robot were calculated during gait trails. The humanoid robot test was used to evaluate the accuracy of the proposed method and a traditional system (OptiTrack) compared to the robot data used as true value.The results of the robot test assured the high-level accuracy of the OptiTrack system. Furthermore, the advantage of applying joint constraints on the captured data by the Kinect was demonstrated. Finally, the full accuracy assessment of the proposed method was done in capturing lower-body joint angles of five healthy subjects during ten gait trials for each subject. The OptiTrack data were used as ground-truth while the accuracy of the proposed Kinect-base system was compared to the Kinect skeleton model used in previous researches and an IMU-based system (Perception Neuron). The absolute agreement and consistency between each optical system and the robot data in the robot test and between each motion capture system and OptiTrack data in the human gait test were determined using intraclass correlations coefficients (ICC3). The reproducibility between systems was evaluated using Lin’s concordance correlation coefficient (CCC). The correlation coefficients with 95% confidence intervals (95%CI) were interpreted substantial for both OptiTrack and the proposed method (ICC>0.75 and CCC>0.95) in the humanoid test. The results of the human gait experiments demonstrated the advantage of the proposed method (ICC>0.75 and RMSE=1.1460◦) over the Kinect skeleton model (ICC<0.4 and RMSE=6.5843◦) and Perception Neuron (ICC<0.4 and RMSE=4.2396◦).(主査) 教授 近野 敦, 教授 田中 孝之, 教授 五十嵐 一情報科学研究科(システム情報科学専攻)
- DOI
- 10.14943/doctoral.k14752
- 国立国会図書館永続的識別子
- info:ndljp/pid/12154403
- コレクション(共通)
- コレクション(障害者向け資料:レベル1)
- コレクション(個別)
- 国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
- 収集根拠
- 博士論文(自動収集)
- 受理日(W3CDTF)
- 2022-03-06T04:54:00+09:00
- 作成日(W3CDTF)
- 2021-09
- 記録形式(IMT)
- PDF
- オンライン閲覧公開範囲
- 国立国会図書館内限定公開
- デジタル化資料送信
- 図書館・個人送信対象外
- 遠隔複写可否(NDL)
- 可
- 連携機関・データベース
- 国立国会図書館 : 国立国会図書館デジタルコレクション