並列タイトル等4次元可解ソリトンに対応する部分多様体の極小性について
一般注記In our previous study, the author and Tamaru proved that a left invariant Riemannian metric on a three-dimensional simply-connected solvable Lie group is a solvsoliton if and only if the corresponding sub manifold is minimal. In this paper, we study the minimality of the corresponding sub manifolds to solvsolitons on four-dimensional cases. In four-dimensional nilpotent cases, we prove that a left-invariant Riemannian metric is a nilsoliton if and only if the corresponding sub manifold is minimal. On the other hand, there exists a four-dimensional simply-connected solvable Lie group so that the above correspondence does not hold. More precisely, there exists a solvsoliton whose corresponding sub manifold is not minimal, and a left-invariant Riemannian metric which is not solvsoliton and whose corresponding sub manifold is minimal.
Takahiro Hashinaga, On the minimality of the corresponding submanifolds to fourdimensional solvsolitons. Hiroshima Mathematical Journal (掲載決定)
コレクション(個別)国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
受理日(W3CDTF)2015-02-03T05:25:05+09:00
連携機関・データベース国立国会図書館 : 国立国会図書館デジタルコレクション