本資料は、掲載誌(URI)等のリンク先にある学位授与機関のWebサイトやCiNii Dissertationsから、本文を自由に閲覧できる場合があります。
博士論文
国立国会図書館館内限定公開
収録元データベースで確認する
国立国会図書館デジタルコレクション
デジタルデータあり
公開元のウェブサイトで確認する
DOI[10.14943/doctoral.k11317]のデータに遷移します
A Study on Noise-Based Global Asymptotic Stabilization and Optimization Method
- 国立国会図書館永続的識別子
- info:ndljp/pid/9207466
国立国会図書館での利用に関する注記
資料に関する注記
一般注記:
- Noise degrades the performance of systems in most cases. However, noise can be used to improve the performance compared to the case of the absence of ...
資料詳細
要約等:
- Noise degrades the performance of systems in most cases. However, noise can be used to improve the performance compared to the case of the absence of ...
書店で探す
障害者向け資料で読む
目次
2015-05-01 再収集
2018-03-04 再収集
全国の図書館の所蔵
国立国会図書館以外の全国の図書館の所蔵状況を表示します。
所蔵のある図書館から取寄せることが可能かなど、資料の利用方法は、ご自身が利用されるお近くの図書館へご相談ください
書店で探す
障害者向け資料で読む
書誌情報
この資料の詳細や典拠(同じ主題の資料を指すキーワード、著者名)等を確認できます。
デジタル
- 資料種別
- 博士論文
- 著者・編者
- 星野, 健太
- 著者標目
- 出版年月日等
- 2014-03-25
- 出版年(W3CDTF)
- 2014-03-25
- 並列タイトル等
- ノイズを用いた大域的漸近安定化・最適化に関する研究
- 寄与者
- 山下, 裕五十嵐, 一金井, 理
- 授与機関名
- 北海道大学
- 授与年月日
- 2014-03-25
- 授与年月日(W3CDTF)
- 2014-03-25
- 報告番号
- 甲第11317号
- 学位
- 博士(情報科学)
- 博論授与番号
- 甲第11317号
- 本文の言語コード
- eng
- 著者別名
- NDC
- 対象利用者
- 一般
- 一般注記
- Noise degrades the performance of systems in most cases. However, noise can be used to improve the performance compared to the case of the absence of noise. This thesis studies the noise-based methods for the global asymptotic stabilization and theoptimization problem in control theory. For the asymptotic stabilization problem, this study establishes the method for designing feedback controllers using Wiener processes.For the optimization problem, this study proposes an extremum seeking method that guarantees the convergence of estimation variables to optimum values.Although the global asymptotic stabilization problem is the one of the fundamental problems in the literature of control theory, there exist systems that cannot be stabilized by any smooth time-invariant feedback controllers. This study employs a method usingstochastic feedback controllers to stabilize such systems. When the stochastic feedback controllers are used to stabilize deterministic nonlinear systems, the closed-loop systems are often modeled as Stratonovich stochastic differential equations. In the stabilizationmethod using a stochastic feedback controller, the constructive method for designing controllers for general nonlinear affine systems has not been established when closed-loop systems are given by Stratonovich stochastic differential equations. This thesis proposes a constructive design method based on stochastic control Lyapunov functions.For the optimization problem, this study considers a stochastic extremum seeking method. In extremum seeking methods, dither signals are added to given systems toapproximate the gradient of objective functions, and the optimum is estimated by updating the estimation variable based on the approximated gradient. In previous extremum seeking methods, although the estimation variables approach the optimum sufficiently,the estimation variables do not converge to the optimum. This thesis shows a stochastic extremum seeking method that can guarantee the convergence of the estimation variables to the optimum by introducing the updating mechanism of the estimation variablesbased on the stochastic Lyapunov stability theory.Chapter 1 states the backgrounds and the objectives of this thesis, and Chapter 2 introduces the mathematical preliminaries, which includes the fundamentals of stochastic process, manifolds. Chapter 3 shows the noise-based stabilization method and the method for designing stochastic feedback controllers. This chapter rst shows the problem setting of the global asymptotic stabilization and the design of the controller. Then, we de ne a stochastic control Lyapunov function for the design of stochastic controllers. The design methodis shown based on the stochastic control Lyapunov function. Further, this chapter gives the proof that the designed controllers by the proposed method globally asymptotically stabilize given systems. Moreover, the numerical examples show the global asymptotic stabilization of a nonholonomic system and non-Euclidean systems. In addition, since the designed controller can be seen as an extension of the Sontag-type controller, the designed controllers satisfy inverse optimality. By the inverse optimality, the controllers have a stability margin.Chapter 4 considers homogeneous stochastic systems and discusses their stability, which can be applied to improve the convergence of the stabilization by the noise-based stabilization. This chapter rst explains the homogeneity, and then gives the de nition ofhomogeneous stochastic systems as an extension of homogeneous deterministic systems.Then, the author shows the relation between the homogeneity and the convergence speed of stable homogeneous stochastic systems. Further, a homogeneous feedback controller is shown to preserve the homogeneity of systems and to guarantee the convergence speed of the closed-loop systems. Finally, this chapter also shows the redesign method of the controllers designed by the method described in Chapter 3 to improve the convergence speed in the stabilization of driftless systems.Chapter 5 shows a stochastic extremum seeking method that can guarantee the convergence of estimation variables to an optimum value. After showing the objective of the stochastic extremum seeking method and the problem setting of the optimization problem, the proposed method is shown, which uses the Wiener process to approximate the gradients of objective functions. The proposed method uses a high-pass lter with a state-dependent parameter obtained from the stochastic Lyapunov stability analysis.Also, this chapter gives the proof of the convergence of the estimation variables by the stochastic Lyapunov theory.Chapter 6 states the conclusion of this thesis.(主査) 教授 山下 裕, 教授 五十嵐 一, 教授 金井 理情報科学研究科(システム情報科学専攻)
- DOI
- 10.14943/doctoral.k11317
- 国立国会図書館永続的識別子
- info:ndljp/pid/9207466
- コレクション(共通)
- コレクション(障害者向け資料:レベル1)
- コレクション(個別)
- 国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
- 収集根拠
- 博士論文(自動収集)
- 受理日(W3CDTF)
- 2015-04-01T13:27:13+09:00
- 作成日(W3CDTF)
- 2014-03
- 記録形式(IMT)
- PDF
- オンライン閲覧公開範囲
- 国立国会図書館内限定公開
- デジタル化資料送信
- 図書館・個人送信対象外
- 遠隔複写可否(NDL)
- 可
- 連携機関・データベース
- 国立国会図書館 : 国立国会図書館デジタルコレクション