金沢大学教育学部
運動時の呼吸困難感発生要因として,呼吸運動指令(肺換気量,V_Eに比例)の増加,呼吸器系に存在する様々な感覚受容器刺激や呼吸の化学受容器刺激が考えられているが,本研究では呼吸筋の代謝受容器の関わりについて検討した。被験者に軽〜高強度の自転車こぎ運動を行なわせ,その間,呼吸困難度(Borgscaleにて,BS),V_E,呼吸筋のOxy及びDeoxyHb/Mb量(Hb:ヘモグロビン,Mb:ミオグロビン)を測定した。呼吸筋の酸素消費量を変化させる目的で運動中,以下の4呼吸条件を負荷した:空気および40%酸素呼吸(呼吸マスク+呼・吸気孔切り替え弁を介して呼吸),呼吸死腔負荷(呼吸マスク+蛇管を介して呼吸),同無付加(呼吸マスクのみ)。呼吸筋として傍胸骨内肋間筋,前鋸筋(共に吸息筋),外腹斜筋(呼息筋)を選び,吸息,呼息いずれの筋が呼吸困難感発生に関わっているかを調べた。いずれの呼吸条件下においても,BSはV_Eおよび吸息筋のDeoxyHb/Mb量との間で比例関係にあり,OxyHb/Mbや呼息筋とBSとの関係は見られなかった。多変量直線回帰分析の結果,呼吸マスクのみの場合,BS=0.09[ΔV_E]-0.05[吸息筋ΔDeoxyHb/Mb]-1.37(r^2=0.87±0.04,n=7)の関係式が得られ,DeoxyHb/Mb測定部位の吸息筋(傍胸骨内肋間筋と前鋸筋)間では差が見られなかった。呼吸マスクに呼吸弁や蛇管を付加した他の3呼吸条件では,結果は全て呼吸マスク+吸気抵抗負荷条件として統合されうることが判明したので,この場合の関係式は,BS=0.10[ΔV_E]+0.08[吸息筋ΔDeoxyHb/Mb]-2.50(r^2=0.93±0.03,n=7)であった。これらの関係式から以下のことが示唆された。(1)運動時の呼吸困難度は換気量と吸息筋のDeoxyHb/Mb量が関係している。(2)吸気抵抗がない場合は,運動時の呼吸困難度はほとんど換気量に比例する。(3)呼吸筋の動きが制限される場合は(例えば,水泳時の呼吸),吸息筋DeoxyHb/Mbの増加が制限され,換気量が同じであっても,運動時の呼吸困難度は高くなる。(4)吸気抵抗が高くなると(例えば,シュノーケルや呼吸弁を介しての呼吸),吸息筋DeoxyHb/Mbの増加が多きくなり,換気量が同じであっても,運動時の呼吸困難度は増進する。
In healthy humans, the breathlessness intensity (BS) during exercise is related to pulmonary ventilation (V_E), stimulation to respiratory chemoreceptors and various sensory receptors existing at tracheae, lungs and respiratory muscles. The present study examined how metaboreceptor in the respiratory muscles is involved in breathlessness during exercise. Subjects performed light to heavy exercise on a cycle ergometer, during which BS, V_E, and Oxy and DeoxyHb/Mb contents (Hb : hemoglobin, Mb : myoglobin) of each of the parasternal internal intercostal muscle, the serratus anterior muscle (both inspiratory muscles) and the external abdominal oblique muscle (expiratory muscle). The subject breathed under 4 conditions with varying metabolic rates of the respiratory muscles : (1) breathing air throtugh a respiratory mask or (2) through the mask plus a tubing with 500-ml dead space, and (3) breathing air or (4) 40% O_2, each through an one-way respiratory valve. Under any conditions of breathing, BS was related to V_E and DeoxyHb/Mb contents of the inspiratory muscles, but not to those of the expiratory muscle and OxyHb/Mb contents. A multiple linear regression analysis evidenced the following two relationships : BS=0.09[ΔV_E] 0.05 [Δ DeoxyHb/Mb]-1.37 (r^2=0.87±0.04, n=7, Δ : difference from preexercise values) when breathing with less inspiratory resistance through the mask alone, and BS=0.10 [ΔV_E]+ 0.08 [ΔDeoxyHb/Mb]-2.50 (r^2=0.93±0.03, n=7) when breathing with higher inspiratory resistances through the mask plus other apparatus. The results suggest that (1) BS during exercise is related to V_E and DeoxyHb/Mb contents of the inspiratory muscles as an index of O_2 consumption of the muscles, (2) with less inspiratory resistance (as in natural spontaneous breathing), the BS is mostly proportional to V_E, (3) with higher inspiratory resistances (as in breathing through a breathing valve or a snorkel), BS is augmented by increased DeoxyHb/Mb of the inspiratory muscles even at a given level of V_E, and (4) restriction of the respiratory muscle movements (as in swimming) results in lower DeoxyHb/Mb of the inspiratory muscles but greater BS, as compared to natural breathing at a given level of V_E.
研究課題/領域番号:11670060, 研究期間(年度):1999 – 2000
出典:「運動時の呼吸困難度と呼吸筋の酸素動態との関係」研究成果報告書 課題番号11670060(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) ( https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-11670060/ )を加工して作成