文書・図像類

Actin dynamics control ploidy-dependent size scaling in Schizosaccharomyces pombe

Icons representing 文書・図像類

Actin dynamics control ploidy-dependent size scaling in Schizosaccharomyces pombe

Material type
文書・図像類
Author
Yamashita, Ichirou
Publisher
-
Publication date
-
Material Format
Digital
Capacity, size, etc.
-
NDC
-
View All

Notes on use

Note (General):

type:textIt has long been known that eukaryotic cells with more DNA content are larger in cell size. However, no molecular mechanisms for this univers...

Search by Bookstore

Holdings of Libraries in Japan

This page shows libraries in Japan other than the National Diet Library that hold the material.

Please contact your local library for information on how to use materials or whether it is possible to request materials from the holding libraries.

other

  • Hiroshima University Institutional Repository

    Digital
    You can check the holdings of institutions and databases with which 学術機関リポジトリデータベース(IRDB)(機関リポジトリ) is linked at the site of 学術機関リポジトリデータベース(IRDB)(機関リポジトリ).
  • Hiroshima University Institutional Repository

    Digital
    You can check the holdings of institutions and databases with which 学術機関リポジトリデータベース(IRDB)(機関リポジトリ) is linked at the site of 学術機関リポジトリデータベース(IRDB)(機関リポジトリ).

Bibliographic Record

You can check the details of this material, its authority (keywords that refer to materials on the same subject, author's name, etc.), etc.

Digital

Material Type
文書・図像類
Author/Editor
Yamashita, Ichirou
Author Heading
Pages
1-78
Text Language Code
eng
Target Audience
一般
Note (General)
type:text
It has long been known that eukaryotic cells with more DNA content are larger in cell size. However, no molecular mechanisms for this universal rule have been given. Here I identify cell division genes that dose-dependently control cell growth or cell extension rate (CER) of diploid cells of the fission yeast Schizosaccharomyces pombe. Genetic analysis revealed a negative role of Cdc2, a conserved master regulator of eukaryotic cell cycle. Surprisingly, half dosage of cdc25+ or nim1+ (cdc25Δ/+ or nim1Δ/+), both activator for Cdc2, decreased CER. I discovered that these genes constitute three overlapping regulatory mechanisms for Cdc2: positive and negative feedback loops and a feedforward network. In the negative feedback loop, Cdc2-activating Cdc25 is required for nuclear accumulation of GFP-Wee1 that inhibits Cdc2. Actin monomers are associated with nuclear localization of GFP-Wee1 and accelerate CER, while actin polymers are related to nuclear accumulation of Cdc25-GFP. In the positive feedback loop, actin monomers are relevant to inhibition of Nim1 and subsequent activation of Cdc2 independently of Wee1, resulting in decrease in CER. Nim1 also plays a key role in the feedforward network for supplying sufficient amount of nuclear GFP-Wee1 and closely cooperates with Cdc25 in order to adjust CER to ploidy. Remarkably, doubling cell division genes in haploids reproduced CER of diploids. These findings establish that yeast cells control CER dependently upon dosage of cell division genes during G2 period in the cell division cycle, and provide a solid foundation for understanding the cell-size scaling with DNA content in other eukaryotes.
Format (IMT)
application/pdf