博士論文
A study on Human Emotion Recognition in Video Images using Deep Learning
国立国会図書館館内限定公開
収録元データベースで確認する
国立国会図書館デジタルコレクション
デジタルデータあり
A study on Human Emotion Recognition in Video Images using Deep Learning
- 国立国会図書館永続的識別子
- info:ndljp/pid/12304619
国立国会図書館での利用に関する注記
本資料は、掲載誌(URI)等のリンク先にある学位授与機関のWebサイトやCiNii Dissertationsから、本文を自由に閲覧できる場合があります。
資料に関する注記
一般注記:
- From the beginning of this century, Artificial Intelligence (AI) has evolved to handle problems in image recognition, classification, segmentation, et...
書店で探す
書店で探す
書誌情報
この資料の詳細や典拠(同じ主題の資料を指すキーワード、著者名)等を確認できます。
デジタル
- 資料種別
- 博士論文
- 著者・編者
- Jargalsaikhan, Orgil
- 出版年月日等
- 2022-03-01
- 出版年(W3CDTF)
- 2022-03-01
- 並列タイトル等
- 深層学習を用いたビデオ画像における人間の感情認識に関する研究
- 授与機関名
- 徳島大学
- 授与年月日
- 2022-03-01
- 授与年月日(W3CDTF)
- 2022-03-01
- 報告番号
- 甲第3579号
- 学位
- 博士(工学)
- 博論授与番号
- 甲第3579号
- 本文の言語コード
- eng
- 件名標目
- 対象利用者
- 一般
- 一般注記
- From the beginning of this century, Artificial Intelligence (AI) has evolved to handle problems in image recognition, classification, segmentation, etc. AI learning is categorized by supervised, semi-supervised, unsupervised or reinforcement learning. Some researchers have said that the future of AI is selfawareness, which is based on reinforcement learning by rewards based on task success. Moreover, it is said that the reward would be harvested from human reactions, specially emotion recognition. On the other hand, emotion recognition is a new inspiring field, but the lack of enough amount of data for training an AI system is the major problem. Fortunately, in the near future, it will be necessary to correctly recognize human emotions because image and video dataset availability is rapidly increasing.Emotions are mental reactions (such as anger, fear, etc.) marked by relatively strong feelings and usually causing physical reactions to previous actions in a short time duration focused on specific objects. In this Work, we are focusing on emotion recognition using face, body part, and intonation.As stated earlier, automatic understanding of human emotion in a wild setting using audiovisual signals is extremely challenging. Latent continuous dimensions can be used to accomplish the analysis of human emotional states, behaviors, and reactions displayed in real-world settings. Moreover, Valence and Arousal combinations constitute well-known and effective representations of emotions. In this thesis, a new Non-inertial loss function is proposed to train emotion recognition deep learning models. It is evaluated in wild settings using four types of candidate networks with different pipelines and sequence lengths. It is then compared to the Concordance Correlation Coefficient (CCC) and Mean Squared Error (MSE) losses commonly used for training. To prove its effectiveness on efficiency and stability in continuous or non-continuous input data, experiments were performed using the Aff-Wild dataset. Encouraging results were obtained.The contributions of the proposed method Non-Inertial loss function are as follows:1.The new loss function allows for Valence and Arousal to be viewed together.2.Ability to train on less data.3.Better results.4.Faster training times.The rest of this thesis explains our motivation, the proposed methods and finally presents our results.
- 国立国会図書館永続的識別子
- info:ndljp/pid/12304619
- コレクション(個別)
- 国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
- 収集根拠
- 博士論文(自動収集)
- 受理日(W3CDTF)
- 2022-07-05T02:30:21+09:00
- 記録形式(IMT)
- application/pdf
- オンライン閲覧公開範囲
- 国立国会図書館内限定公開
- デジタル化資料送信
- 図書館・個人送信対象外
- 遠隔複写可否(NDL)
- 可
- 連携機関・データベース
- 国立国会図書館 : 国立国会図書館デジタルコレクション