Jump to main content
図書

詳説Deep Learning : 実務者のためのアプローチ

Icons representing 図書
The cover of this title could differ from library to library. Link to Help Page

詳説Deep Learning : 実務者のためのアプローチ

Call No. (NDL)
M121-M130
Bibliographic ID of National Diet Library
029845324
Material type
図書
Author
Josh Patterson, Adam Gibson 著ほか
Publisher
オライリー・ジャパン
Publication date
2019.8
Material Format
Paper
Capacity, size, etc.
571p ; 21cm
NDC
007.13
View All

Notes on use

Note (General):

原タイトル: Deep Learning

Detailed bibliographic record

Summary, etc.:

エンタープライズ向けのディープラーニングの解説書。ディープラーニングアプリケーションを開発、運用するための実践的な手法を紹介(Provided by: 出版情報登録センター(JPRO))

Search by Bookstore

Holdings of Libraries in Japan

This page shows libraries in Japan other than the National Diet Library that hold the material.

Please contact your local library for information on how to use materials or whether it is possible to request materials from the holding libraries.

Northern Japan

Kanto

  • Agriculture Library Information system - WebOPAC

    Search Service
    Paper
    You can check the holdings of institutions and databases with which Agriculture Library Information system - WebOPAC is linked at the site of Agriculture Library Information system - WebOPAC.
  • CiNii Research

    Search Service
    Paper
    You can check the holdings of institutions and databases with which CiNii Research is linked at the site of CiNii Research.

Search by Bookstore

Publication bibliographic database Books Find a bookstore where you can purchase books from

Books is a database of the publishing industry with information provided by publishers. You can search for currently available paperbacks and eBooks.

Bibliographic Record

You can check the details of this material, its authority (keywords that refer to materials on the same subject, author's name, etc.), etc.

Paper

Material Type
図書
ISBN
978-4-87311-880-2
Title Transcription
ショウセツ ディープ ラーニング : ジツムシャ ノ タメ ノ アプローチ
Author/Editor
Josh Patterson, Adam Gibson 著
本橋和貴 監訳
牧野聡, 新郷美紀 訳
Publication Date
2019.8
Publication Date (W3CDTF)
2019
Extent
571p