Alternative Title低温プラズマにおける微粒子の形成と輸送に関する研究
Note (General)type:Thesis
This thesis studies the dust particles in plasmas. It consists of two parts. The first part is the formation of dust particles. That is to study how the dust particles are generated from the reactive gas in the plasmas. The second part is the transport behaviour of dust particles. That is to study how the dust particles act in the plasmas.In the part of the formation of dust particles, carbon dust particles are generated in the plasmas. It is known that the formation process of dust particles in plasmas can be determined by 3 steps: nucleation, agglomeration and surface grow. The nucleation step is focused. The results of experiments show that the nucleation process occurs faster in higher power, higher pressure and lower temperature. The dependency of the nucleation time on the temperature is explained by the vibration-transition energy relaxation mechanism, and that on the RF power and pressure is explained by the ratio of the charge and diffusion time of the small dust particles.In the part of the transport behaviours of dust particles, industrially fabricated particles with determined size are injected into Ar plasmas. The particles in the plasmas are observed by laser scattering with a CCD camera. The diagnostics of plasma are performed by a double Langmuir probe. Pulse-time modulation to the Ar RF plasmas is studied to be a factor to influence and to control the transport of dust particles. Particles of mono-dispersed size are firstly studied in the plasmas. It is shown that the levitating positions and falling down processes can be controlled by RF power and pulse-time modulation. Secondly, two sizes particles are injected into the plasma at same time. The different transport behaviours, as like the segmentation of levitation and different timing of falling down basis on their size, are observed. Particles of mixture sizes can be separated one size particles from other sizes. The mechanisms of transport behaviours of the dust particles are investigated by the combination of the diagnostic of plasma parameters (electron temperature and ion density in principle) by the double Langmuir probe and calculation of the forces acting on the dust particles. Calculation methods adjusting to the specific experiment setup are established. The calculation results have a good agreement with that of the experiments.
Collection (particular)国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
Date Accepted (W3CDTF)2022-05-09T11:57:37+09:00
Data Provider (Database)国立国会図書館 : 国立国会図書館デジタルコレクション