Alternative Titleデクスメデトミジンはラット出血性ショックモデルにおいて血清シンデカン-1の上昇を抑制し生存率を改善する
Note (General)J-STAGEにて、最終版の公開あり。
The final version of this article is available on J-STAGE.
doctoral
医学系研究科
Hemorrhagic shock causes vascular endothelial glycocalyx (EGCX) damage and systemic inflammation. Dexmedetomidine (DEX) has anti-inflammatory and EGCX-protective effects, but its effect on hemorrhagic shock has not been investigated. Therefore, we investigated whether DEX reduces inflammation and protects EGCX during hemorrhagic shock. Anesthetized Sprague-Dawley rats were randomly assigned to five groups (n=7 per group): no shock (SHAM), hemorrhagic shock (HS), hemorrhagic shock with DEX (HS+DEX), hemorrhagic shock with DEX and the α7 nicotinic type acetylcholine receptor antagonist methyllycaconitine citrate (HS+DEX/MLA), and hemorrhagic shock with MLA (HS+MLA). HS was induced by shedding blood to a mean blood pressure of 25-30 mmHg, which was maintained for 30 min, after which rats were resuscitated with Ringer’s lactate solution at three times the bleeding volume. The survival rate was assessed up to 3 h after the start of fluid resuscitation. Serum tumor necrosis factor-alpha (TNF-α) and syndecan-1 concentrations, and wet-to-dry ratio of the heart were measured 90 min after the start of fluid resuscitation. The survival rate after 3 h was significantly higher in the HS+DEX group than in the HS group. Serum TNF-α and syndecan-1 concentrations, and the wet-to-dry ratio of heart were elevated by HS, but significantly decreased by DEX. These effects were antagonized by MLA. DEX suppressed the inflammatory response and serum syndecan-1 elevation, and prolonged survival in rats with HS.
Collection (particular)国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
Date Accepted (W3CDTF)2023-03-02T11:18:11+09:00
Data Provider (Database)国立国会図書館 : 国立国会図書館デジタルコレクション