Alternative Titleマウス海馬神経細胞におけるIschemic postconditioning はミトコンドリア局在KATP チャンネルを介してグルタミン酸放出を抑制し神経保護効果をもたらす。
Note (General)type:Thesis
A mild ischemic load applied after a lethal ischemic insult reduces the subsequent ischemia-reperfusion injury, and is called ischemic postconditioning (PostC). We studied the effect of ischemic PostC on synaptic glutamate release using a whole-cell patch-clamp technique. We recorded spontaneous excitatory post-synaptic currents (sEPSCs) from CA1 pyramidal cells in mouse hippocampal slices. The ischemic load was perfusion of artificial cerebrospinal fluid (ACSF) equilibrated with mixed gas (95% N2 and 5% CO2). The ischemic load was applied for 7.5 min, followed by ischemic PostC 30 s later, consisting of three cycles of 15 s of reperfusion and 15 s of re-ischemia. We found that a surging increase in sEPSCs frequency occurred during the immediate-early reperfusion period after the ischemic insult. We found a significant positive correlation between cumulative sEPSCs and the number of dead CA1 neurons (r = 0.70; p = 0.02). Ischemic PostC significantly suppressed this surge of sEPSCs. The mitochondrial KATP (mito-KATP) channel opener, diazoxide, also suppressed the surge of sEPSCs when applied for 15 min immediately after the ischemic load. The mito-KATP channel blocker, 5-hydroxydecanoate (5-HD), significantly attenuated the suppressive effect of both ischemic PostC and diazoxide application on the surge of sEPSCs. These results suggest that the opening of mito-KATP channels is involved in the suppressive effect of ischemic PostC on synaptic glutamate release and protection against neuronal death. We hypothesize that activation of mito-KATP channels prevents mitochondrial malfunction and breaks mutual facilitatory coupling between glutamate release and Ca2+ entry at presynaptic sites.
博士(医学)・乙第1484号・令和2年12月24日
Copyright: © 2019 Yokoyama et al. This is an open access article distributed under the terms of the Creative Commons Attribution License(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
identifier:PloS one Vol.14 No.4 Article No.e0215104 (2019 Apr)
identifier:19326203
identifier:http://ginmu.naramed-u.ac.jp/dspace/handle/10564/3829
identifier:PloS one, 14(4): Article No.e0215104
DOIinfo:doi/10.1371/journal.pone.0215104
Collection (particular)国立国会図書館デジタルコレクション > デジタル化資料 > 博士論文
Date Accepted (W3CDTF)2021-05-23T18:24:43+09:00
Data Provider (Database)国立国会図書館 : 国立国会図書館デジタルコレクション